

Cross-Project Defect Prediction: Scalable and Interpretable Domain Adaptation Approaches

Khadija Javed
Department of Computer Science
University of Pisa

Mauriana Pesaresi Seminars, 2025/04/11





Introduction

Significance and research value

**Challenges in Cross-Project Defect Prediction** 

Methodology

**Results** 

**Conclusion and Future Prospects** 





## Introduction



#### **Software Defect Prediction**

- Learns a prediction model from historic data
- Predicts defect for same project
- Hundreds of prediction model exists
- Models work fairly well with precision and recall up to 80%.

| Predictor        | Precision | Recall |
|------------------|-----------|--------|
| Pre-Release Bugs | 73.80%    | 62.90% |
| Test Coverage    | 83.80%    | 54.40% |
| Dependencies     | 74.40%    | 69.90% |
| Code Complexity  | 79.30%    | 66.00% |
| Code Churn       | 78.60%    | 79.90% |
| Org. Structure   | 86.20%    | 84.00% |

From: N. Nagappan, B. Murphy, and V. Basili. The influence of organizational structure on software quality. ICSE 2008.





### Why Cross-Project Defect Prediction?

- Some projects do have not enough data to train prediction models or the data is of poor quality
- New projects do have no data yet
- Can such projects use models from other projects?
- Cross-project defect prediction (CPDP) predict defects in a target project domain by leveraging information from different source project domains.





# Significance and research value

### **Significance and Research Value**



#### Significance and Research Value

- Enables defect prediction in data-scarce projects
- Reduces cost by identifying defects pre-deployment
- Improves software quality across domains
- Leverages historical data from other projects
- Enhances prediction with **transfer learning techniques**
- Faces challenges due to complex structure, data disparity, and class imbalance



# **Challenges in Cross-Project Defect Prediction (CPDP)**

### **Challenges in Cross-Project Defect Prediction (CPDP)**



- Models Handling domain differences between projects.
- Ensuring data quality and consistency across diverse sources.
- Overcoming the scarcity of **labeled data** in target projects.
- Balancing model **generalization** with prediction **accuracy**.







Framework of Proposed Methodology for Cross-Project Defect Prediction.



#### Model Building: Correlation-based Feature Selection (CFS)

- Correlation-based Feature
   Selection (CFS) selects
   features based on predictive
   capacity and redundancy.
- Uses best-first search to find features with high correlation to target and low internal correlation





#### **Model Building: SMOTE-ENN**

- SMOTE: Oversample minority class by creating synthetic examples with k-nearest neighbors.
- Repeat until target oversampling is achieved.
- ENN: Determine k-nearest neighbors and assign majority class.
- Delete instances with differing classes between observation and neighbors and repeat until class balance is reached





#### Model Building: Bidirectional LSTM

- Bidirectional LSTM handles context dependencies with two layers
- One layer processes the sequence forward, the other backward
- Final output is the concatenation of both layers' hidden states





#### Model Building: Bidirectional GRU

- Bi-GRU uses two unidirectional GRUs, one forward and one backward
- Combines past and future information to impact current states





#### Model Building: Attention mechanism

- Attention mechanism weights and focuses on important nodes in a sequence
- Aggregates meaningful nodes to build a sequence vector







Architecture of Proposed Model



## Results



#### **Description of Datasets**

| Dataset | Project    | Number of instances | Defective instances% |
|---------|------------|---------------------|----------------------|
| AEEEM   | EQ         | 325                 | 39.692               |
|         | JDT        | 997                 | 20.662               |
|         | LC         | 399                 | 16.040               |
|         | ML         | 1862                | 13.158               |
|         | PDE        | 1492                | 14.008               |
| PROMISE | Ivy2.0     | 352                 | 11.36                |
|         | Poi3.0     | 442                 | 64.09                |
|         | Xerces1.4  | 508                 | 76.81                |
|         | Synapse1.2 | 256                 | 33.63                |
|         | Xalan2.6   | 875                 | 53.13                |



#### F1- measure and AUC Analysis with and without Feature Selection on AEEEM

| Source  | Target | F1-measure |         | AUC        |         |  |
|---------|--------|------------|---------|------------|---------|--|
|         |        | Without FS | With FS | Without FS | With FS |  |
| EQ      | JDT    | 0.737      | 0.900   | 0.681      | 0.875   |  |
| EQ      | LC     | 0.742      | 0.917   | 0.590      | 0.750   |  |
| EQ      | ML     | 0.677      | 0.895   | 0.589      | 0.731   |  |
| EQ      | PDE    | 0.659      | 0.879   | 0.610      | 0.771   |  |
| JDT     | EQ     | 0.668      | 0.892   | 0.719      | 0.900   |  |
| JDT     | LC     | 0.652      | 0.879   | 0.670      | 0.810   |  |
| JDT     | ML     | 0.661      | 0.887   | 0.680      | 0.762   |  |
| JDT     | PDE    | 0.649      | 0.875   | 0.586      | 0.761   |  |
| LC      | EQ     | 0.650      | 0.878   | 0.570      | 0.846   |  |
| LC      | JDT    | 0.760      | 0.923   | 0.674      | 0.848   |  |
| LC      | ML     | 0.643      | 0.869   | 0.571      | 0.738   |  |
| LC      | PDE    | 0.651      | 0.871   | 0.592      | 0.760   |  |
| ML      | EQ     | 0.665      | 0.893   | 0.688      | 0.848   |  |
| ML      | JDT    | 0.669      | 0.899   | 0.660      | 0.823   |  |
| ML      | LC     | 0.772      | 0.938   | 0.688      | 0.835   |  |
| ML      | PDE    | 0.644      | 0.873   | 0.580      | 0.750   |  |
| PDE     | EQ     | 0.733      | 0.908   | 0.699      | 0.883   |  |
| PDE     | JDT    | 0.665      | 0.891   | 0.629      | 0.791   |  |
| PDE     | LC     | 0.654      | 0.884   | 0.681      | 0.820   |  |
| PDE     | ML     | 0.628      | 0.877   | 0.588      | 0.725   |  |
| Average |        | 0.678      | 0.891   | 0.637      | 0.801   |  |



- (a) Boxplot Analysis of F1- measure with and without Feature Selection on AEEEM
- (b) Boxplot Analysis of AUC with and without Feature Selection on AEEEM





#### F1- measure and AUC Analysis with and without Data Balancing Method on AEEEM.

| Source  | Target | F1-measure           |                   | AUC                  |                   |
|---------|--------|----------------------|-------------------|----------------------|-------------------|
|         |        | Without<br>SMOTE-ENN | With<br>SMOTE-ENN | Without<br>SMOTE-ENN | With<br>SMOTE-ENN |
| EQ      | JDT    | 0.580                | 0.900             | 0.447                | 0.875             |
| EQ      | LC     | 0.588                | 0.917             | 0.416                | 0.750             |
| EQ      | ML     | 0.563                | 0.895             | 0.413                | 0.731             |
| EQ      | PDE    | 0.457                | 0.879             | 0.412                | 0.771             |
| JDT     | EQ     | 0.578                | 0.892             | 0.602                | 0.900             |
| JDT     | LC     | 0.494                | 0.879             | 0.510                | 0.810             |
| JDT     | ML     | 0.489                | 0.887             | 0.427                | 0.762             |
| JDT     | PDE    | 0.483                | 0.875             | 0.420                | 0.761             |
| LC      | EQ     | 0.488                | 0.878             | 0.510                | 0.846             |
| LC      | JDT    | 0.491                | 0.923             | 0.515                | 0.848             |
| LC      | ML     | 0.481                | 0.869             | 0.422                | 0.738             |
| LC      | PDE    | 0.478                | 0.871             | 0.429                | 0.760             |
| ML      | EQ     | 0.480                | 0.893             | 0.513                | 0.848             |
| ML      | JDT    | 0.466                | 0.899             | 0.509                | 0.823             |
| ML      | LC     | 0.499                | 0.938             | 0.507                | 0.835             |
| ML      | PDE    | 0.487                | 0.873             | 0.418                | 0.750             |
| PDE     | EQ     | 0.489                | 0.908             | 0.514                | 0.883             |
| PDE     | JDT    | 0.497                | 0.891             | 0.412                | 0.791             |
| PDE     | LC     | 0.480                | 0.884             | 0.519                | 0.820             |
| PDE     | ML     | 0.495                | 0.877             | 0.415                | 0.725             |
| Average |        | 0.503                | 0.891             | 0.466                | 0.801             |



- (a) Boxplot Analysis of F1- measure with and without Smote-Enn on PROMISE
- (b) Boxplot Analysis of AUC with and without Smote-Enn on PROMISE



## **Experimental Results and Evaluations**



#### F1-measure Analysis of The Proposed Approach and Baseline Methods on PROMISE

| Source      | Target      | TPTL  | DA-KTSVMO | GB-CPDP | Ours  |
|-------------|-------------|-------|-----------|---------|-------|
| synapse_1.2 | poi-2.5     | 0.462 | 0.533     | 0.631   | 0.651 |
| synapse_1.2 | xerces-1.2  | 0.433 | 0.542     | 0.466   | 0.602 |
| camel-1.4   | ant-1.6     | 0.575 | 0.463     | 0.416   | 0.656 |
| camel-1.4   | jedit_4.1   | 0.396 | 0.402     | 0.356   | 0.636 |
| xerces-1.3  | poi-2.5     | 0.349 | 0.537     | 0.544   | 0.595 |
| xerces-1.3  | synapse_1.1 | 0.536 | 0.329     | 0.469   | 0.588 |
| xerces-1.2  | xalan-2.5   | 0.447 | 0.462     | 0.383   | 0.571 |
| lucene_2.2  | xalan-2.5   | 0.506 | 0.438     | 0.502   | 0.612 |
| synapse_1.1 | poi-3.0     | 0.342 | 0.566     | 0.537   | 0.602 |
| ant-1.6     | poi-3.0     | 0.353 | 0.315     | 0.384   | 0.520 |
| camel-1.4   | ant-1.6     | 0.556 | 0.511     | 0.652   | 0.782 |
| lucene_2.2  | ant-1.6     | 0.377 | 0.539     | 0.669   | 0.772 |
| log4j-1.1   | ant-1.6     | 0.595 | 0.585     | 0.676   | 0.745 |
| log4j-1.1   | lucene_2.0  | 0.478 | 0.576     | 0.622   | 0.733 |
| lucene_2.0  | log4j-1.1   | 0.419 | 0.561     | 0.489   | 0.742 |
| lucene_2.0  | xalan-2.5   | 0.510 | 0.510     | 0.514   | 0.546 |
| jedit_4.1   | camel-1.4   | 0.447 | 0.502     | 0.501   | 0.678 |
| jedit_4.1   | xalan-2.4   | 0.332 | 0.386     | 0.443   | 0.552 |
| Average     |             | 0.451 | 0.487     | 0.514   | 0.643 |

## **Experimental Results and Evaluations**



#### **AUC Analysis of The Proposed Approach and Baseline Methods on PROMISE**

| Source      | Target      | TPTL  | DA-KTSVMO | GB-CPDP | Ours  |
|-------------|-------------|-------|-----------|---------|-------|
| synapse_1.2 | poi-2.5     | 0.485 | 0.498     | 0.593   | 0.674 |
| synapse_1.2 | xerces-1.2  | 0.485 | 0.563     | 0.681   | 0.712 |
| camel-1.4   | ant-1.6     | 0.541 | 0.655     | 0.532   | 0.669 |
| camel-1.4   | jedit_4.1   | 0.329 | 0.441     | 0.466   | 0.612 |
| xerces-1.3  | poi-2.5     | 0.588 | 0.477     | 0.568   | 0.633 |
| xerces-1.3  | synapse_1.1 | 0.488 | 0.468     | 0.502   | 0.602 |
| xerces-1.2  | xalan-2.5   | 0.471 | 0.437     | 0.696   | 0.722 |
| lucene_2.2  | xalan-2.5   | 0.621 | 0.702     | 0.568   | 0.733 |
| synapse_1.1 | poi-3.0     | 0.493 | 0.510     | 0.571   | 0.630 |
| ant-1.6     | poi-3.0     | 0.518 | 0.383     | 0.572   | 0.619 |
| camel-1.4   | ant-1.6     | 0.603 | 0.642     | 0.661   | 0.713 |
| lucene_2.2  | ant-1.6     | 0.411 | 0.570     | 0.658   | 0.729 |
| log4j-1.1   | ant-1.6     | 0.631 | 0.509     | 0.682   | 0.733 |
| log4j-1.1   | lucene_2.0  | 0.529 | 0.621     | 0.613   | 0.757 |
| lucene_2.0  | log4j-1.1   | 0.546 | 0.571     | 0.647   | 0.719 |
| lucene_2.0  | xalan-2.5   | 0.632 | 0.604     | 0.594   | 0.669 |
| jedit_4.1   | camel-1.4   | 0.267 | 0.355     | 0.556   | 0.644 |
| jedit_4.1   | xalan-2.4   | 0.425 | 0.563     | 0.669   | 0.680 |
| Average     |             | 0.504 | 0.532     | 0.602   | 0.680 |



# Conclusion& Future Prospects

## **Conclusion & Future Prospects**



- Explored **domain adaptation techniques**, leveraged to overcome different data distribution and class imbalance problem in CPDP and a deep learning model that combines bi-directional LSTM and GRU with attention mechanism for Cross-project defect prediction model.
- Exploring **hybrid models** combining traditional machine learning with deep learning approaches, Ahmed et al. and **model averaging** in cross-project defect prediction can improve prediction performance of model, Li et al.



- Javed, K.; Shengbing, R.; Asim, M.; Wani, M.A. Cross-Project Defect Prediction Based on Domain Adaptation and LSTM Optimization. Algorithms 2024, 17, 175.
   <a href="https://doi.org/10.3390/a17050175">https://doi.org/10.3390/a17050175</a>
- Li, T., Wang, Z. & Shi, P. Within-project and cross-project defect prediction based on model averaging. *Sci Rep* **15**, 6390 (2025). <a href="https://doi.org/10.1038/s41598-025-90832-4">https://doi.org/10.1038/s41598-025-90832-4</a>
- Ahmed Abdu, Zhengjun Zhai, Hakim A. Abdo, Sungon Lee, Mohammed A. Al-masni, Yeong Hyeon Gu, Redhwan Algabri, Cross-project software defect prediction based on the reduction and hybridization of software metrics, Alexandria Engineering Journal, Volume 112, 2025, Pages 161-176, ISSN 1110-0168, <a href="https://doi.org/10.1016/j.aej.2024.10.034">https://doi.org/10.1016/j.aej.2024.10.034</a>.
- Zhang, W., Zhao, J., Qin, G. et al. Cross-project defect prediction based on autoencoder with dynamic adversarial adaptation. Appl Intell 55, 324 (2025).
   https://doi.org/10.1007/s10489-024-06087-5
- Berahmand K, Daneshfar F, Salehi ES et al (2024) Autoencoders and their applications in machine learning: a survey. Art Intell Rev 57(2):28. https://doi.org/10.1007/s10462-023-10662-6
- Li Z, Zhang H, Jing X, Xie J, Guo M, Ren J (2023) DSSDPP: data selection and sampling based domain programming predictor for cross-project defect prediction. IEEE Trans Software Eng 49:1941–1963. <a href="https://doi.org/10.1109/TSE.2022.3204589">https://doi.org/10.1109/TSE.2022.3204589</a>
- Liu C, Yang D, Xia X, Yan M, Zhang X (2019) A two-phase transfer learning model for cross-project defect prediction. Inf SoftwTechnol 107:125–136. https://doi.org/10.1016/j.infsof.2018.11. 005
- Tong H, Liu B, Wang S, Li Q (2019) Transfer-learning oriented class imbalance learning for cross-project defect prediction, ArXiv, pp 1–38. https://doi.org/10.48550/arXiv.1901.08429



